If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+30-16x=0
a = 2; b = -16; c = +30;
Δ = b2-4ac
Δ = -162-4·2·30
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4}{2*2}=\frac{12}{4} =3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4}{2*2}=\frac{20}{4} =5 $
| 9x-5=37-3x | | 9x−7x=10 | | Y=1.0x+33 | | -2(x+4)=8(2x-2) | | Y=-8/3x-2/9 | | 7x-3+2x=33 | | 1+12-6x=4.2x | | 10x+1=11x-7 | | 3+1=2y+5-y | | 32x=20x+36 | | 32x=20x+32 | | 9/x=5/14 | | x^2-0.5x+1=0 | | 15w+19w-3+2=-5w+2-3 | | 2x+70=3x-40 | | 9x+28=4x+13 | | 7y^2-18=15y | | -4(5x-3)=-3x | | -4c-2c+11=6c-13 | | n+3=72÷12 | | -1.5(0.3x+12)=4 | | -3/2(1/3x+12)=4 | | 2c+6=2c-1 | | 8x-9+4x=7x-3 | | -4x+14+6x-19=-6 | | Q+5=2c+7 | | 13=v+9/2 | | 4c+11=c+2 | | (x)=9x2−16 | | -8(u-3)=u+3) | | -5(-5x+3)=-16x+6 | | (2/3)x-7=35-4x |